Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nitrosothiols in bacterial pathogens and pathogenesis.

Identifieur interne : 001751 ( Main/Exploration ); précédent : 001750; suivant : 001752

Nitrosothiols in bacterial pathogens and pathogenesis.

Auteurs : Jay R. Laver [Royaume-Uni] ; Samantha Mclean ; Lesley A H. Bowman ; Laura J. Harrison ; Robert C. Read ; Robert K. Poole

Source :

RBID : pubmed:22768799

Descripteurs français

English descriptors

Abstract

SIGNIFICANCE

The formation and degradation of S-nitrosothiols (SNOs) are important mechanisms of post-translational protein modification and appear to be ubiquitous in biology. These processes play well-characterized roles in eukaryotic cells, including a variety of pathologies and in relation to chronic conditions. We know little of the roles of these processes in pathogenic and other bacteria.

RECENT ADVANCES

It is clear, mostly from growth and transcriptional studies, that bacteria sense and respond to exogenous SNOs. These responses are phenotypically and mechanistically distinct from the responses of bacteria to nitric oxide (NO) and NO-releasing agents, as well as peroxynitrite. Small SNOs, such as S-nitrosoglutathione (GSNO), are accumulated by bacteria with the result that intracellular S-nitrosoproteins (the 'S-nitrosoproteome') are detectable. Recently, conditions for endogenous SNO formation in enterobacteria have been described.

CRITICAL ISSUES

The propensity of intracellular proteins to form SNOs is presumably constrained by the same rules of selectivity that have been discovered in eukaryotic systems, but is also influenced by uniquely bacterial NO detoxification systems, exemplified by the flavohemoglobin Hmp in enterobacteria and NO reductase of meningococci. Furthermore, the bacterial expression of such proteins impacts upon the formation of SNOs in mammalian hosts.

FUTURE DIRECTIONS

The impairment during bacterial infections of specific SNO events in the mammalian host is of considerable interest in the context of proteins involved in innate immunity and intracellular signalling. In bacteria, numerous mechanisms of S-nitrosothiol degradation have been reported (e.g., GSNO reductase); others are thought to operate, based on consideration of their mammalian counterparts. The nitrosothiols of bacteria and particularly of pathogens warrant more intensive investigation.


DOI: 10.1089/ars.2012.4767
PubMed: 22768799


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nitrosothiols in bacterial pathogens and pathogenesis.</title>
<author>
<name sortKey="Laver, Jay R" sort="Laver, Jay R" uniqKey="Laver J" first="Jay R" last="Laver">Jay R. Laver</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Infection and Immunity, The University of Sheffield, Sheffield, United Kingdom. J.R.Laver@sheffield.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Infection and Immunity, The University of Sheffield, Sheffield</wicri:regionArea>
<wicri:noRegion>Sheffield</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mclean, Samantha" sort="Mclean, Samantha" uniqKey="Mclean S" first="Samantha" last="Mclean">Samantha Mclean</name>
</author>
<author>
<name sortKey="Bowman, Lesley A H" sort="Bowman, Lesley A H" uniqKey="Bowman L" first="Lesley A H" last="Bowman">Lesley A H. Bowman</name>
</author>
<author>
<name sortKey="Harrison, Laura J" sort="Harrison, Laura J" uniqKey="Harrison L" first="Laura J" last="Harrison">Laura J. Harrison</name>
</author>
<author>
<name sortKey="Read, Robert C" sort="Read, Robert C" uniqKey="Read R" first="Robert C" last="Read">Robert C. Read</name>
</author>
<author>
<name sortKey="Poole, Robert K" sort="Poole, Robert K" uniqKey="Poole R" first="Robert K" last="Poole">Robert K. Poole</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:22768799</idno>
<idno type="pmid">22768799</idno>
<idno type="doi">10.1089/ars.2012.4767</idno>
<idno type="wicri:Area/Main/Corpus">001961</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001961</idno>
<idno type="wicri:Area/Main/Curation">001961</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001961</idno>
<idno type="wicri:Area/Main/Exploration">001961</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nitrosothiols in bacterial pathogens and pathogenesis.</title>
<author>
<name sortKey="Laver, Jay R" sort="Laver, Jay R" uniqKey="Laver J" first="Jay R" last="Laver">Jay R. Laver</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Infection and Immunity, The University of Sheffield, Sheffield, United Kingdom. J.R.Laver@sheffield.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Infection and Immunity, The University of Sheffield, Sheffield</wicri:regionArea>
<wicri:noRegion>Sheffield</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mclean, Samantha" sort="Mclean, Samantha" uniqKey="Mclean S" first="Samantha" last="Mclean">Samantha Mclean</name>
</author>
<author>
<name sortKey="Bowman, Lesley A H" sort="Bowman, Lesley A H" uniqKey="Bowman L" first="Lesley A H" last="Bowman">Lesley A H. Bowman</name>
</author>
<author>
<name sortKey="Harrison, Laura J" sort="Harrison, Laura J" uniqKey="Harrison L" first="Laura J" last="Harrison">Laura J. Harrison</name>
</author>
<author>
<name sortKey="Read, Robert C" sort="Read, Robert C" uniqKey="Read R" first="Robert C" last="Read">Robert C. Read</name>
</author>
<author>
<name sortKey="Poole, Robert K" sort="Poole, Robert K" uniqKey="Poole R" first="Robert K" last="Poole">Robert K. Poole</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Bacterial Infections (metabolism)</term>
<term>Bacterial Infections (microbiology)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Cysteine (analogs & derivatives)</term>
<term>Cysteine (metabolism)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Gram-Negative Bacteria (metabolism)</term>
<term>Gram-Negative Bacteria (physiology)</term>
<term>Gram-Positive Bacteria (metabolism)</term>
<term>Gram-Positive Bacteria (physiology)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Nitrosation (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Reactive Nitrogen Species (metabolism)</term>
<term>S-Nitrosoglutathione (metabolism)</term>
<term>S-Nitrosothiols (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bactéries à Gram négatif (métabolisme)</term>
<term>Bactéries à Gram négatif (physiologie)</term>
<term>Bactéries à Gram positif (métabolisme)</term>
<term>Bactéries à Gram positif (physiologie)</term>
<term>Cystéine (analogues et dérivés)</term>
<term>Cystéine (métabolisme)</term>
<term>Espèces réactives de l'azote (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Infections bactériennes (microbiologie)</term>
<term>Infections bactériennes (métabolisme)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Nitrosation (MeSH)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>S-Nitroso-glutathion (métabolisme)</term>
<term>S-Nitrosothiols (métabolisme)</term>
<term>Stress oxydatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Cysteine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Cysteine</term>
<term>Reactive Nitrogen Species</term>
<term>S-Nitrosoglutathione</term>
<term>S-Nitrosothiols</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Cystéine</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacterial Infections</term>
<term>Gram-Negative Bacteria</term>
<term>Gram-Positive Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Infections bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Bacterial Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bactéries à Gram négatif</term>
<term>Bactéries à Gram positif</term>
<term>Cystéine</term>
<term>Espèces réactives de l'azote</term>
<term>Infections bactériennes</term>
<term>Protéines bactériennes</term>
<term>S-Nitroso-glutathion</term>
<term>S-Nitrosothiols</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Bactéries à Gram négatif</term>
<term>Bactéries à Gram positif</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gram-Negative Bacteria</term>
<term>Gram-Positive Bacteria</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Nitrosation</term>
<term>Oxidative Stress</term>
<term>Protein Processing, Post-Translational</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Interactions hôte-pathogène</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Nitrosation</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE</b>
</p>
<p>The formation and degradation of S-nitrosothiols (SNOs) are important mechanisms of post-translational protein modification and appear to be ubiquitous in biology. These processes play well-characterized roles in eukaryotic cells, including a variety of pathologies and in relation to chronic conditions. We know little of the roles of these processes in pathogenic and other bacteria.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RECENT ADVANCES</b>
</p>
<p>It is clear, mostly from growth and transcriptional studies, that bacteria sense and respond to exogenous SNOs. These responses are phenotypically and mechanistically distinct from the responses of bacteria to nitric oxide (NO) and NO-releasing agents, as well as peroxynitrite. Small SNOs, such as S-nitrosoglutathione (GSNO), are accumulated by bacteria with the result that intracellular S-nitrosoproteins (the 'S-nitrosoproteome') are detectable. Recently, conditions for endogenous SNO formation in enterobacteria have been described.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CRITICAL ISSUES</b>
</p>
<p>The propensity of intracellular proteins to form SNOs is presumably constrained by the same rules of selectivity that have been discovered in eukaryotic systems, but is also influenced by uniquely bacterial NO detoxification systems, exemplified by the flavohemoglobin Hmp in enterobacteria and NO reductase of meningococci. Furthermore, the bacterial expression of such proteins impacts upon the formation of SNOs in mammalian hosts.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>FUTURE DIRECTIONS</b>
</p>
<p>The impairment during bacterial infections of specific SNO events in the mammalian host is of considerable interest in the context of proteins involved in innate immunity and intracellular signalling. In bacteria, numerous mechanisms of S-nitrosothiol degradation have been reported (e.g., GSNO reductase); others are thought to operate, based on consideration of their mammalian counterparts. The nitrosothiols of bacteria and particularly of pathogens warrant more intensive investigation.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22768799</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Nitrosothiols in bacterial pathogens and pathogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>309-22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2012.4767</ELocationID>
<Abstract>
<AbstractText Label="SIGNIFICANCE" NlmCategory="CONCLUSIONS">The formation and degradation of S-nitrosothiols (SNOs) are important mechanisms of post-translational protein modification and appear to be ubiquitous in biology. These processes play well-characterized roles in eukaryotic cells, including a variety of pathologies and in relation to chronic conditions. We know little of the roles of these processes in pathogenic and other bacteria.</AbstractText>
<AbstractText Label="RECENT ADVANCES" NlmCategory="BACKGROUND">It is clear, mostly from growth and transcriptional studies, that bacteria sense and respond to exogenous SNOs. These responses are phenotypically and mechanistically distinct from the responses of bacteria to nitric oxide (NO) and NO-releasing agents, as well as peroxynitrite. Small SNOs, such as S-nitrosoglutathione (GSNO), are accumulated by bacteria with the result that intracellular S-nitrosoproteins (the 'S-nitrosoproteome') are detectable. Recently, conditions for endogenous SNO formation in enterobacteria have been described.</AbstractText>
<AbstractText Label="CRITICAL ISSUES" NlmCategory="RESULTS">The propensity of intracellular proteins to form SNOs is presumably constrained by the same rules of selectivity that have been discovered in eukaryotic systems, but is also influenced by uniquely bacterial NO detoxification systems, exemplified by the flavohemoglobin Hmp in enterobacteria and NO reductase of meningococci. Furthermore, the bacterial expression of such proteins impacts upon the formation of SNOs in mammalian hosts.</AbstractText>
<AbstractText Label="FUTURE DIRECTIONS" NlmCategory="CONCLUSIONS">The impairment during bacterial infections of specific SNO events in the mammalian host is of considerable interest in the context of proteins involved in innate immunity and intracellular signalling. In bacteria, numerous mechanisms of S-nitrosothiol degradation have been reported (e.g., GSNO reductase); others are thought to operate, based on consideration of their mammalian counterparts. The nitrosothiols of bacteria and particularly of pathogens warrant more intensive investigation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Laver</LastName>
<ForeName>Jay R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Infection and Immunity, The University of Sheffield, Sheffield, United Kingdom. J.R.Laver@sheffield.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McLean</LastName>
<ForeName>Samantha</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bowman</LastName>
<ForeName>Lesley A H</ForeName>
<Initials>LA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harrison</LastName>
<ForeName>Laura J</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Read</LastName>
<ForeName>Robert C</ForeName>
<Initials>RC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poole</LastName>
<ForeName>Robert K</ForeName>
<Initials>RK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/E015883/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026361">Reactive Nitrogen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026403">S-Nitrosothiols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>57564-91-7</RegistryNumber>
<NameOfSubstance UI="D026422">S-Nitrosoglutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>926P2322P4</RegistryNumber>
<NameOfSubstance UI="C021315">S-nitrosocysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001424" MajorTopicYN="N">Bacterial Infections</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006090" MajorTopicYN="N">Gram-Negative Bacteria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006094" MajorTopicYN="N">Gram-Positive Bacteria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015538" MajorTopicYN="N">Nitrosation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026361" MajorTopicYN="N">Reactive Nitrogen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026422" MajorTopicYN="N">S-Nitrosoglutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026403" MajorTopicYN="N">S-Nitrosothiols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22768799</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2012.4767</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bowman, Lesley A H" sort="Bowman, Lesley A H" uniqKey="Bowman L" first="Lesley A H" last="Bowman">Lesley A H. Bowman</name>
<name sortKey="Harrison, Laura J" sort="Harrison, Laura J" uniqKey="Harrison L" first="Laura J" last="Harrison">Laura J. Harrison</name>
<name sortKey="Mclean, Samantha" sort="Mclean, Samantha" uniqKey="Mclean S" first="Samantha" last="Mclean">Samantha Mclean</name>
<name sortKey="Poole, Robert K" sort="Poole, Robert K" uniqKey="Poole R" first="Robert K" last="Poole">Robert K. Poole</name>
<name sortKey="Read, Robert C" sort="Read, Robert C" uniqKey="Read R" first="Robert C" last="Read">Robert C. Read</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Laver, Jay R" sort="Laver, Jay R" uniqKey="Laver J" first="Jay R" last="Laver">Jay R. Laver</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001751 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001751 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22768799
   |texte=   Nitrosothiols in bacterial pathogens and pathogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22768799" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020